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Abstract The idea behind the original quantum network (QN) model is simple
enough. One joins each atom to its nearest neighbours, and then treats electrons (though
quantum mechanically of course) as though they flowed through one-dimensional
wires as in an electrical circuit obeying Kirchhoff’s Laws at every node. Here we
will begin with two periodic systems: namely a single graphene layer, which has
recently been produced experimentally, and a two-dimensional sheet of boron atoms.
This will be followed by a discussion of B nanotubes, using the simplest QN model,
supplemented by comparison of these results with very recent work of other authors
using density functional theory. Then the disordered quantum network (DQN) model
will be treated in some detail. First of all, the main, physically motivated, steps by
which Dancz, Edwards and March passed from the DQN model to the Boltzmann
equation will be set out. They will then be related to substantial progress made on the
mathematical solution of the DQN model by a number of authors; again a substantial
part of this work invoking the Boltzmann equation.
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1 Background and outline

This study is concerned with electronic states generated by the so-called quantum
network (QN) model. This model was devised to investigate conjugated molecules, as
summarized in the article by Platt [1], and goes back at least to Pauling [2]. An early
contribution to its extension to crystalline solids was that of Coulson [3].

The free electron model of a crystal is that in which the electron travels as a free
particle along wires of a network, which in turn is fitted on to the crystal lattice. The
wires represent ‘bonds’ (e.g. in a graphene layer to be discussed a little further below)
and the nodes of the network represent atoms. More realistically, potentials can be
put along the lines of the network, examples being given in Refs. [4–7]. This addition
of potentials is done in such a way that each node of the network lies in the centre
of a well. To provide a concrete background to what follows, we shall below give a
summary of Montroll’s model as it can be fully solved analytically. In the course of
this article, we shall present our own contributions to the chemists network model.
Then we shall make numerous comments involving very recent studies by a variety
of authors.

It is natural to begin with the spatially ordered network model, and the prime focus
will be on results for boron. However, it will prove useful to introduce the boron results
by referring, albeit briefly, to our own π -electron calculations relating to a graphene
layer, the interest in this material having been hugely re-kindled since its synthesis
[8–10] (see also Ref. [11] for a recent review).

The outline of the present article is then as follows. In Sect. 2, the electronic structure
of boron, both in layer and in nanotube geometries, will be discussed. After this
discussion of boron, based as it was on the Laplace operator, the gross effects of bond
potentials will be treated, following Klein and March [7], appeal also being made to
the studies of other authors (see especially the very recent bond potential work of
Kuchment and Post [12]; for carbon, some contact is made between their study and
results from the simple Laplace operator treatment.

Then the final part of this article will be concerned with disordered networks, a field
which has grown rapidly fairly recently. As background to such developments over the
past decade, the steps involved in the early physically motivated proposal by Dancz
et al. [13] to treat such disordered networks by appealing to the Boltzmann transport
equation will first be set out. Following this, we shall refer, albeit more briefly, to
important recent progress on the random network model made by authors including in
particular Germinet [14], Aizenman [15–17], Veselić [18], and Exner [19]. We shall
also refer to results obtained by Schrader et al. [20] on the interesting model these
workers termed a ‘random necklace’.

1.1 Electron states in Montroll’s model

Montroll [5] considered a quantum particle moving in a network, with aperiodic
and periodic networks representing molecules and crystals, respectively. While he
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neglected the dynamics of the network nodes, fixed at the nuclei positions, he restric-
ted the problem to that of finding the wave function of the particles only along the
bonds connecting nodes in the network. Such an approximation reduces a generally
multidimensional problem to an inherently one-dimensional problem. For particular
choices of the potential acting on the particle along the bonds, the problem turns out to
be exactly solvable, thus allowing one to extract relevant information, such as energy
bands and density of states. Montroll [5] originally assumed that the potential wells
along the bonds give rise to a single electronic bound state for each node. He later
extended his model to the case of several bound states per node [6].

What is essential to Montroll’s model is that the particle wave functions along
each bond should match continuously at a node. In addition, momentum or current
conservation implies that

∑∇φ = 0, where the gradient of the wave function φ
is measured along each network bond away from a given node. Such a condition
(‘Kirchhoff law’) amounts to a set of homogeneous equations

F(k, η)φ[ j] =
c∑

i=1

φ[ ji ], (1)

where φ[ j] is the wave function along the network bond j , the summation on the
right hand side is restricted to all bonds ji connecting a given node to its c nearest
neighbours, and F(k, η) is a matrix form factor, depending on particle’s momentum
k and the parameters η characterizing the atomic potential acting on the particle. It
is immediate to recognize a formal analogy with the usual textbook model of masses
and springs, to describe the vibrations of a lattice.

Montroll [6] then proceeds to discuss the case of a potential well V (x) = −V0
sech2 γ x , interpolating between the limit of nearly localized (γ → ∞) and free
(γ = 0) particles. The quantum problem corresponding to such a potential V (x) can
be solved analytically. In particular, the density of states (DOS) in any dimensions
can be connected with the form factor, and shows analytical similarities with the DOS
calculated within, say, the tight binding model. Specifically, the DOS is characterized
by Van Hove singularities in dimensions d ≤ 2, corresponding to the Fermi manifold
touching the boundaries of the Brillouin zone, and to a change of its topology.

2 Results for a single graphene layer and for a two-dimensional sheet of boron
atoms

In this section, we treat two periodic two-dimensional assemblies, namely (i) a single
graphene layer (which can now be produced experimentally [8–10]; see also Ref. [11]
for a recent review), and (ii) a sheet of boron atoms.

2.1 Quantum currents in networks

Quantum mechanics on a generally multiply connected lattice can be reformulated in
terms of the corresponding covering space, which contains all non-homotopic paths
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in the original lattice, i.e. paths that cannot be deformed into one another [21]. The
covering space is locally like the original lattice but is simply connected. The covering
space of a lattice network is essentially obtained by eliminating all closed loops.1 In
the case of a (discrete) network or lattice, the covering space is given by an infinite or
Cayley tree, which is essentially one-dimensional. Ringwood’s approach [21] enables
the Green’s function of a free particle on a lattice to be expressed as a sum over all
distinct homotopic paths.

Let us assume that at time t = 0 the particle can be located at a particular point
of the line segments of the tree. For t > 0 it will then evolve freely along the one-
dimensional path connecting the original point to one of its c neighbouring nodes in
the tree. At a node, the wave function is required to vary continuously, whereas the
current divides equally down the remaining c − 1 branches. The wave function ψ(x)
and (c − 1)−1∂ψ/∂x evaluated at the node act therefore as initial conditions for the
wave function in the next c − 1 segments. These are the so-called Griffith’s boundary
conditions [21], and correspond to the Kirchhoff’s laws of classical circuits [22].

Let ω = √−E , with E < 0 the particle’s energy. Then, the Green’s function
between two points at a distance y apart along the same line segment reads G(y) =
−(2ω)−1e−ω|y|. The Green’s function between two points P and P ′ at a distance x
and x ′ from the original node and separated by N nodes in the tree (T ), can then be
obtained as

GT (x, x ′; E) = (e−ωx ′
eωx ′

)Z(bN−1)Z(bN−2) . . . Z(b1)Z(x)

(
1

2ω

0

)

, (2)

where bi is the length of the i th segment in the tree and

Z(b) = 1

2(c − 1)

(
ce−ωb (c − 2)eωb

(c − 2)e−ωb ceωb

)

. (3)

The Green’s function on the lattice (L) is then obtained by a sum over all homotopically
distinct walks γ connecting P and P ′ as

GL(x, x ′; E) =
∑

γ

eiα(γ )GT (γ x, x ′; E), (4)

where α(γ ) enters the phase of the wave function through ψ(γ x) = eiα(γ )ψ(x).
Ringwood [21] uses the results outlined above to recover the (more directly cal-

culated) density of states in a graphene layer given by Coulson [3,4]. In a little more
detail, Ringwood [21] writes the dispersion relation E = E(k) implicitly as

c cos(E1/2a) = S(k), (5)

1 Ringwood [21] exemplifies the real line (a simply connected one-dimensional space) as the universal
covering space of the circle: they are locally indistinguishable, but the real line can be thought of as infinite
copies of the circle, obtained by rolling the circle without slipping along the real line.
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Fig. 1 Dispersion relation
within Ringwood’s approach
[21] for a graphene layer. it
Solid and dashed lines refer to
valence and conduction bands
for π -electrons in the graphene
sheet, respectively. Dashed
hexagon marks the boundaries
of the 1BZ, with special points
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where c is the coordination number (c = 3 for graphene) and S(k) = ∑c
j=1 eik·a j is the

local structure factor, a j being the lattice vectors connecting a node to its c neighbours,
at a distance a (cf. Eqs. 9 and 10 below). The dispersion relation for a graphene layer
is plotted in Fig. 1 as contour lines of E(k) as given by Eq. 5. Ringwood [21] then
expresses the density of states corresponding to such a dispersion relation as

N (E) = − 1

π
Im

sinhωa

ω

1

(2π)d

∫
ddk

c coshωa − E(k)
, (6)

where ω = (−E+)1/2, and d = 2 for a graphene layer. We have in Fig. 2 plotted our
results for N (E), calculated by means of Ringwood’s approach for a graphene layer.

2.2 Electronic states in a two-dimensional sheet of boron (B) atoms

Leys et al. [23] considered states having different chiralities, and explicitly derived the
one-dimensional (1D) energy bands of a number of foldings of the 2D boron sheet
discussed above. Below, we consider the case of a (n, n) i-zigzag boron nanotube.

2.2.1 One dimension

Within the orientation selected for the x–y coordinate system, the chiral vector Ch

(and correspondingly the reciprocal lattice vector K1) is directed along the positive x
axis for this special case of (n,m) chosen such that m = n. Using periodic boundary
conditions along the circumferential direction then yields

kx, j = 2π

n
√

3a
, j = 1, . . . , 2n. (7)
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Fig. 2 Density of states within Ringwood’s approach [21] for a graphene layer. The vertical line marks the
location of the Fermi level, lying precisely between the valence and conduction bands for π -electrons in
the graphene sheet. This DOS reproduces the one originally derived by Coulson [3], using a quite different
method, for a graphene layer within the QN model

Then the i-zigzag structure factor Siz
j (k) which results is given by

Siz
j (k) = 2 cos ka + 4 cos

(
π j

n

)

cos

(
ka

2

)

, (8)

where j = 1, . . . , 2n and −π/a < k < π/a. From this result, one can readily write
the corresponding equation for the (n, n) energy bands Eiz

q (k) for the QN model.
Figure 3 (left) displays the energy bands obtained for a boron (3, 3) i-zigzag nano-

tube which has a diameter of 5.20 a. The fact that K1 is directed along a symmetry axis
of the 2D Brillouin zone has the consequence that the energy bands are symmetrical
around the origin. The tight-binding model has been found to have a similar set of
energy bands, as well as the same general form and degeneracy.
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Fig. 3 (Left) Energy bands for a boron (3, 3) i-zigzag nanotube, within the QN model. (Right) Density
of states for a (3, 3) i-zigzag boron nanotube, within the QN model, corresponding to the energy bands
displayed in this figure. The vertical line denotes the Fermi level (half occupied band) (cf. Ref. [23])
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Corresponding to the energy bands in the left panel of Fig. 3, the right panel of the
same Fig. 3 displays the cumulative DOS for such a 1-D boron (3, 3) i-zigzag nanotube.
The various Van Hove singularities are to be associated with the crossover from one
band to another, and correspond to j = 6, j = 1, 5, j = 2, 4, j = 3, j = 2, 4, and
j = 3, from left to right.

2.2.2 Two dimensions

Leys et al. [23] have given a detailed derivation of the dispersion relation E(k) for
such a B sheet, via the QN model. This reads:

E(k) = q2

2
= 1

2

[
1

a
arccos

(
1

c
S(k)

)]2

. (9)

The local structure factor appearing in Eq. (9) is defined by

S(k) =
c∑

j=1

eik·a j , (10)

where the vectors a j are such that they connect every lattice point R to its c nearest
neighbours. For comparison with Eq. 9 on the QN model, the tight-binding dispersion
relation turns out to have the form

ETB(k) = επ + t S(k). (11)

If φπ denotes the atomic π -orbital centred on lattice position Ri , then επ is the matrix
element 〈φπ(r)|H |φπ(r)〉, where H is the Hamiltonian, while t in Eq. 11 is given by

ti ≡ t = 〈φπ(r − ai )|H |φπ(r)〉, i = 1, . . . , 3. (12)

The two methods share analytical similarities.
Returning to the QN model leading to E(k) in Eq. 9, the density of states can be

obtained as

DOS(E) = 2

(2π)2

∫
ds

|∇k E(k)| , (13)

where the line integral is along a contour of constant energy E . We record the results
for both the TB and the QN models in Fig. 4, where the band parameters επ and t in the
TB case have been chosen in such a way as to have the band extrema coincide with the
QN case. While the DOS of the two models share common analytical features, such
as the occurrence of a Van Hove singularity, with a logarithmically divergent DOS,
corresponding to a change of topology of the Fermi line, it can be seen that the TB
model slightly overestimates the location of both the Fermi level and the Van Hove
singularity, with respect to the QN case.
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Fig. 4 Density of states for the boron sheet, within the quantum network (QN, solid line) and the tight
binding (TB, dashed line) models. Vertical lines mark the position of the Fermi level in either case (half
occupied band)

3 Electronic structure of B nanotubes from the quantum network model

One needs, of course, to specify the model B 2D lattice, which is assumed planar, and
which will eventually be folded to obtain B nanotubes. The structure of the B sheet
considered can be simply obtained by considering an ordinary sheet of graphene in
which (a) all C atoms are replaced by B atoms, and (b) an additional B atom is placed
in the centre of each hexagon. The result is then that every B atom has a near-neighbour
coordination, denoted by c, which is equal to 6. Fig. 5 shows the resulting lattice.

This lattice is described by using two lattice vectors, a1 and a2, which are either
120◦ apart of 60◦ apart. If one wishes only to describe the 2D lattice, both choices prove
equivalent. However, we wish below to employ these lattice vectors to characterize the
nanotubes obtained by folding the 2D sheet. Then it turns out that the choice where
both lattice vectors are 60◦ apart is the most useful.

Fig. 5 Lattice structure of a B
sheet, with chiral vectors
Ch(n,m) for the realization of
two possible nanotubes, upon
folding

a1

a2

C (3,3)h

C (5,0)h

T

T
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To describe a nanotube constructed by folding such a sheet of B atoms, the starting
point is to define a chiral vector Ch such that

Ch = na1 + ma2. (14)

This vector connects, by definition, two lattice points on the sheet which have to
be connected on folding to form a tube. The specific choice of the pair (n,m) then
completely determines the structure of the tube which is thereby produced. From
the definition of the chiral vectors Ch , it follows that its length, which equals the
circumference, L say, of the resulting nanotube, is given by

L = a
√

n2 + m2 + nm. (15)

All possible distinct seamless nanotubes can be constructed by choosing (n,m) with
n any integer and m ranging from 0 to n. We simply note here that, dealing with
boron, both the nanotube generated by a Ch(n, n) chiral vector and that generated
by a Ch(n, 0) vector have in essence zigzag symmetry. In the case n = m, one has
however isosceles triangles (i), while in the case m = 0 we have equilateral triangles
(e). We refer below to these limiting choices as (n, n) i-zigzag and (n, 0) e-zigzag
symmetry, respectively.

3.1 Definition of unit cell of B nanotube

We need next to define both the unit cell and the corresponding Brillouin zone of the
B nanotube. It parallels the C case, which is set out in Ref. [24].

The vector perpendicular to the chiral vector Ch going from the (chosen) origin to
the nearest lattice point defines the translational vector of the 1D periodic nanotube.
This is

T = t1a1 + t2a2, (16)

the relation between t1, t2 and m, n being unchanged from the C case, for which

t1 = 2m + n

dR
, t2 = −2n + m

dR
, (17)

dR being the greatest common divisor (gcd) of 2m + n and 2n + m. The rectangle
generated by Ch and T constitutes the unit cell of the B nanotube, where the translatio-
nal vector T determines the direction in which the unit cell repeats itself periodically.

3.2 Reciprocal space and Brillouin zone

The reciprocal lattice vector k1 and k2 are defined by

bi · a j = 2πδi j . (18)
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The vectors in the reciprocal space of the nanotube are defined by the relations

Ch · K1 = 2π : T · K1 = 0, (19a)

Ch · K2 = 2π : T · K2 = 2π. (19b)

This results for K1 and K2 in the forms

K1 = 1

N
(−t2b1 + t1b2), (20a)

K2 = 1

N
(mb1 − nb2), (20b)

where N is given by

N = mt1 − nt2 = |Ch × T|
|a1 × a2| = 2(m2 + n2 + mn)

dR
. (21)

Here, b1 and b2 are the lattice vectors of the graphene Brillouin zone (BZ), while N
is the number of atoms in the unit cell of the nanotube. It should be noted that for the
C case the number of C atoms in the nanotube unit cell is 2N .

Since the B nanotube is periodic only in one dimension, only the vector K2 is a
reciprocal vactor defining a 1D BZ. Along the direction of K1, periodic boundary
conditions will result in a quantization of the component of the wave vector in that
direction. Each allowed value will then contribute a 1D energy band in the 1D BZ.

It is to be noted that since the B lattice we consider here can be constructed from
taking only the lattice points in a graphene layer (points with identical environment),
the BZ of the B and C sheets have identical symmetries.

It is relevant to note that Leys et al. [23,25] have used the QN model to treat
C cages and nanotubes. However, below, we refer briefly to the subsequent studies
of Kuchment and Post (KP) [12] and Badanin et al. [26,27]. Both studies consider
the Schrödinger operator with a periodic potential, KP giving an explicit derivation
of dispersion relations on C nanostructures, including graphene treated above and all
types of single-wall nanotubes. The later studies of Badanin [26,27] focus on armchair
single-wall nanotubes.

While there is an intimate connection between the KP study [12] and the later work
of Badanin et al. [26,27], as is pointed out in the latter, the case treated by KP of
even potential is such that the spectrum of the Schrödinger operator on the nanotubes
considered coincides with the spectrum of the Hill operator, as proved by KP. Badanin
et al. relate this finding to the corresponding Lyapunov function for even potential being
expressible in terms of that function for the Hill operator. Beyond the achievements
of KP summarized very briefly above, Badanin et al. provide spectral analysis for the
Schrödinger operators with arbitrary potentials on edges.

We refer next, albeit briefly, to recent work of Cabria et al. [28]. These authors have
treated B sheets by a version of density functional theory (DFT), the geometric as
well as the electronic structure now being explored. The DFT results were obtained
with a computational procedure using plane-waves and ultrasoft pseudopotentials.
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For the exchange-correlation potential, Cabria et al. used the local density approxima-
tion (LDA) functional of Vosko et al. [29] and the generalized gradient approximation
(GGA) functional of Perdew et al. [30]. The stable geometry of a B sheet is then found
to exhibit buckling. Two different B–B bond lengths characterize the geometry with
buckling: (i) 1.63 Å between the B atoms in a row, and (ii) 1.81 Å between the B
atoms in adjacent rows. Although buckled and planar B sheets have rather different
bonding characteristics, an essential similarity of the electronic structure is that both
are metallic.

Cabria et al. [28] demonstrate further that B nanotubes (BNTs) produced by rolling
up a B sheet have also a buckled surface when the helicity permits the formation
of alternating up and down B rows in the surface. However, in all other examples,
BNTs exhibit only flat surfaces, as assumed in our own work. Again, buckled B and
the corresponding nanostructures have the common feature that their electronic states
both correspond to metallic phases.

4 Electronic structure of a disordered quantum network

In the work of Dancz et al. [13], a solid composed of a single quadrivalent atomic type
is again considered as for, say, graphite, but the use of Bloch’s theorem for periodic
arrays was replaced by statistical considerations to take account of the topological and
positional disorder. At the heart of the statistical approach was to consider the network
as an array of intersecting paths. These paths can then be compared to the trajectories
of particles in a perfect gas, the intersection representing the analogue of collisions.
This then suggested that one should invoke a Boltzmann equation, whose validity
would be analogous to the series of approximations associated with the customary
Boltzmann equation. Following this discussion, we shall consider briefly the work of
Ziman [31] and the subsequent study of Dancz et al. [32,33].

4.1 Sketch of arguments leading to the Boltzmann equation

As in the ordered QN model, electrons move along lines joining near-neighbour atoms.
The boundary conditions appropriate to the wave functions associated with a quadri-
valent (or other valency) atom have been discussed, e.g., by Ruedenberg and Scherr
[34] (see also Refs. [35–37]). These boundary conditions take the form that (i) the
wave function ψ is continuous across an intersection and therefore ψ on each of the
four paths satisfies

ψ1 = ψ2 = ψ3 = ψ4; (22)

and (ii) the sum of the derivatives, as measured away from the intersection, must
vanish, and hence one has

ψ ′
1 + ψ ′

2 + ψ ′
3 + ψ ′

4 = 0. (23)
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It is useful to work with the logarithmic derivative z(x, E) along a path x , as
measured from one intersection to the next, and defined explicitly by

z(x, E) = 1

ψ(x, E)

∂ψ(x, E)

∂x
. (24)

Equations 22 and 23 may then be rewritten as

z1(x, E)+ z2(x, E)+ z3(x, E)+ z4(x, E) = 0. (25)

Of course, in the basic QN model, on each of these paths the wave function obeys the
free electron Schrödinger equation (in atomic units with h̄ = m = 1)

[
1

2

∂2

∂x2 + E

]

ψ(x, E) = 0. (26)

The equation of motion for the logarithmic derivative z(x, E) readily follows from
Eqs. 24 and 26 as

∂z(x, E)

∂x
+ z2(x, E)+ 2E = 0. (27)

The next important step (see Ref. [13]) is to define a joint probability distribution,
which is denoted by P(x0, ψ0, x) for the probability that

ψ(x, E) = ψ0 and z(x, E) = z0 (28)

at a point x along the path. Following the assumptions of Dancz et al. [13], the pro-
perties of this probability distribution can be determined from the Liouville equation

[
∂

∂x
+ ∂

∂ψ
(zψ)− ∂

∂z
(z2 + 2E)

]

P(z, ψ, x) = 0 (29)

together with the boundary conditions at an intersection.

4.2 Passage from the Liouville equation to the Boltzmann equation
for the disordered QN model

If the network is next considered to be made up of paths, one may follow Dancz et al.
[13] in writing down a Boltzmann equation for this model, by assigning a direction to
the paths and thereby defining a sense to the x’s. This turns out to be always possible
for a 2N -valent species. Then, as one traverses one of these paths, there is a pair (z, ψ)
just before an intersection and a pair (z′, ψ ′) just after. The changes in these functions,
of course, are due to the influence of the intersecting path with another (z1, ψ1) just
before and a (z′

1, ψ
′
1) just following the intersection. Following Dancz et al. [13] let us
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emphasize this analogy by changing to customary Boltzmann equation notation via
the correspondence

[z, ψ; z′, ψ ′; z1, ψ1; z′
1, ψ

′
1] → [v, r; v′, r ′; v1, r1; v′

1, r
′
1]. (30)

Then Eq. 22 is analogous to the assertion that the particles of a perfect gas are points
with a zero range of interaction. Dancz et al. [13] further assume that (i) there is no
correlation between the values of v, v1, v′

1, and (ii) there is a distribution of path
lengths between intersections so that the knowledge of a previous ‘collision’ can be
considered, on average, lost. Then, it may be anticipated that a Boltzmann transport
approach will be applicable. The ‘scattering’ term, however, may be expected to differ
from the usual equation, since the values of v, v1 classically determine v′, v′

1 given
the impact parameter: for the present disordered QN model these conditions are not
sufficient and an additional boundary condition which defines v′

1 is required. Dancz
et al. [13] therefore argue that the probability of finding v1, r1 is determined by the
network lying behind the intersection along the v1, r1 path. A similar argument for
v′

1, r
′ also holds and then one is directly led to a Boltzmann equation which reads [13]

[
∂

∂x
+ ∂

∂ψ
(zψ)− ∂

∂z
(z2 + 2E)

]

P(z, ψ, x) = ρL[P(z, ψ, x)], (31)

where ρ is the average density of intersections per unit length, while L[ f (z, ψ)] is a
linear functional given by

L[ f (z, ψ)] =
[ ∫ ∫

dz1dψ1 P(z1, ψ1)

∫ ∫

dz′
1dψ ′

1 P(z′
1, ψ

′
1)

×
∫ ∫

dz′dψ ′ δ(z − z′ + z1 − z′
1)δ(ψ − ψ1)δ(ψ − ψ ′)δ(ψ − ψ ′

1)

× (
f (z′, ψ ′)− f (z, ψ)

)
] /[∫

dz′ P(z′, ψ)
]2

. (32)

It is to be noted that the wave function does not enter the ‘scattering’ term just as the
scattering process is position independent in the Boltzmann gas. Furthermore, as in
the Boltzmann gas, the joint probability distribution P(z, ψ, x) rapidly approaches a
steady state independent of x . Thus Eq. 31 takes the simpler form

[
∂

∂ψ
(zψ)− ∂

∂z
(z2 + 2E)

]

P(z, ψ) = ρL[P(z, ψ)] (33)

and therefore the quantity P(z, ψ) can be determined self-consistently. Integrating
over ψ in Eq.33, one finds the probability P0(z) of finding the value of z in the steady
state to be governed by the equation
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− ∂

∂z
(z2 + 2E)P0(z) = ρ

∫

dz1 P0(z1)

∫

dz′
1 P0(z

′
1)

×
∫

dz′ δ(z − z′ + z1 − z′
1)[P0(z

′)− P0(z)]. (34)

Here use has been made of the fact that ψ and z are statistically independent. The
Boltzmann counterpart to this condition is that the velocity distribution is not a function
of the coordinates.

A Fourier transform of P0(z), say P̃0(ω) = ∫
dzeiωz P0(z), leads to a simplification

of Eq. 34. Since P0(z) is a probability distribution, the Fourier transform P̃0(ω) satisfies
the condition P̃0(0) = 1 and P̃0(−ω) = P̃∗

0 (ω). Then Eq. 34 becomes

[
∂2

∂ω2 − 2E + iρ

ω

(
|P̃0(ω)|2 − 1

)]

P̃0(ω) = −2πN (E)δ(ω). (35)

This Eq. 35 is the central result of the Dancz et al. [13] approximate theory of a disor-
dered QN model. The quantity N (E) appearing in Eq. 35 arises from the asymptotic
behaviour of P0(z) and is given precisely by the limiting form

lim
z→±∞ z2 P0(z) = N (E). (36)

For a one-dimensional system, Frisch and Lloyd [38] have shown that the quantity
N (E) is the cumulative density of states.

As Dancz et al. [13] show, an approximate solution for P̃0(ω) in Eq. 35 can be
obtained by self-consistently expanding in a power series about the origin

P̃0(ω) = 1 + [−πN (E)+ iα]ω + [E + iπρN (E)]ω2 + · · · , (37)

where α is to be chosen such that the series convergese for large ω. If one now
introduces the quantities γ and θ through the definitions

γ = 2E + 2π iρN (E) (38a)

θ = ρ(2E + π2 N 2(E)+ α2), (38b)

Equation 35 becomes, to first order in ω,

(
∂2

∂ω2 − γ + iθω

)

P̃0(ω) = −2π i N (E)δ(ω). (39)

This Eq. 39 has a solution which is a linear combination of Airy functions. Equation 39
can also be transformed back to obtain for P0(z):

[

θ
∂

∂z
+ (z2 + γ )

]

P0(z) = N (E), (40)
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with solution

P0(z) = N (E)e
− 1
θ

(
1
3 z3+γ z

) ∫ z

−∞
dµ e

+ 1
θ

(
1
3µ

3+γµ
)

. (41)

The ‘density of states’ N (E) can then be obtained from the normalization condition.
As emphasized by Dancz et al. [13], Eqs. 39–41 are equivalent to what Halperin

[39] obtained for an electron in a random white-Gaussian noise potential. By following
the methods of Halperin, the density of states plus the density matrix can be found.
Also, in his formalism, two-point density matrices and electrical conductivity can be
discussed.

To conclude this section, it is worthy of emphasis that the power series expansion in
ω assumed in Eq. 37 is inessential, the non-linear differential Eq. 35 being amenable
to numerical solution.

4.3 Beyond the Dancz et al. model

Prompted by the work of Dancz et al. [13], it has been pointed out by Ziman [31] that
care is needed to avoid some indeterminacy in the probability distribution P(z) of the
logarithmic derivatives of the wave function.

We note at this point that two basic approximations are involved in the Dancz et al.
[13] treatment which leads to a Boltzmann equation for a disordered QN. The first is
equivalent to the neglect of closed circuits. Put in mathematical terms, the network is
a disordered Cayley tree, i.e. there is one and only one path joining any two points in
the network. There seem to be physical systems analogous to this. Thus vulcanized
rubber has perhaps some hundreds of monomer units between each vulcanizing link
and such a weakly linked system might be expected to be well described by a Cayley
tree. Of course, the other extreme of a perfect crystal which has infinitely many regular
closed circuits would be very badly represented by a Cayley tree.

Returning at this point to the considerations of Ziman [31], Dancz has argued that
additional conditions on ψ at the surface of the tree structure are taken into account
in the Dancz et al. [13] analysis. The Ziman proof of complete indeterminacy is valid
only for an infinite network, where there are no end conditions to be statisfied on any
chain. But further studies are needed in this area as Ziman stresses [31].

It is important here to refer to the subsequent treatment of Dancz and Edwards
[32]. In this study, a logarithmic derivative propagator is derived [see their Eq. 2.10].
They then note that this propagator yields the result of Dancz et al. [13], using the
Boltzmann transport equation for a tetravalent Cayley tree with randomly occurring
(e.g. uncorrelated) intersections.

Also relevant to the above discussion is the later investigation [33] of the electronic
structure of disordered networks by utilizing and extending the techniques of Halperin
[39]. In this study of Dancz and Edwards [33] one specific result is to obtain an averaged
local density of states which reproduces the result of Lloyd [40] for a Cayley tree of
fixed connectivity with Lorentzian disorder.
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4.4 Transcending the Boltzmann equation approach

While various authors have subsequently confirmed the relevance and utility of the
Boltzmann equation approach of Dancz et al. [13] to treat the DQN, much mathematical
progress has come subsequently from a more general approach to the problem of
localization on quantum graphs produced by a random potential.

Among the most recent contributions on the above mathematical area, we choose
to mention within the present context especially those with extensive bibliography.
Thus, Exner et al. [19] have used multiscale analysis to prove spectral and dynami-
cal localization for the specific case of a cubic lattice quantum graph with a random
potential. Such multiscale analysis in relation to localization in random media is re-
viewed in earlier work of Germinet and Klein [41] (see also Ref. [42]). Subsequent to
these two reviews, Aizenman et al. [15] have used moment analysis (more precisely,
analysis of fractional moments of the resolvent) to study localization effects of disor-
der on the spectral and dynamical properties od Schrödinger operators with random
potentials. The results these workers derive include exponentially decaying bounds on
the transition amplitude and related projection kernels. Fractional moments are finite
due to the resonance-diffusing effects of disorder. Related recent work on the spec-
trum of random Schrödinger operators on tree graphs is that of Aizenman et al. [16]
and of Aizenman and Warzel [17]. Dimensional dependence of localization, referred
to by Dancz et al. [13], has been reopened recently by Germinet et al. [14]. For an
attractive Poisson random potential in any dimension, these authors prove exponential
and dynamical localization at low energies for the Schrödinger operator. They also
find that the eigenvalues in that spectral region of localization have finite multiplicity.
Following the early discussion by Dancz et al. [13] on the integrated density of states,
we note also here the extensive recent review with this quantity at its focus, by Veselić
[18].

Kostrykin and Schrader considered the so-called random necklace model [20].
Again, one focus of their work was the integrated density of states, another being
the study of the Lyapunov exponent for the random necklace model. These authors
studied such a model which they think may provide the simplest example of a diffe-
rential operator on a nontrivial infinite random metric graph. The graph consists of
infinitely many loops joined symmetrically by intervals of unit length, such that the
arc lengths of the loops are independent, indentically distributed random variables.
Their terminology of a random necklace model was then motivated by the model of
Avron et al. [43], where the arc lengths of the loops were kept fixed and which Avron
et al. termed a necklace of rings.

5 Summary and future directions

After a brief discussion of a two-dimensional square lattice with a band potential
which permits analytic solution, examples are given of the QN energy band dispersion
relations in a graphene layer, and the corresponding density of states. A related B layer
is also considered, followed by a discussion of the electronic structure of B nanotubes
of different chiralities.
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Some attention is then given to the effect of disorder of a QN model. Using a tree
assumption (no closed circuits), a Boltzmann equation is derived for the logarithmic
derivative of the density of states. Approximate analytic solutions are summarized,
which subsequently can be refined numerically by the use of finite difference approxi-
mations, should this eventually prove necessary.

As to future directions, the work of Klein and March [7] points the way to important
refinements, by returning to bond potentials. It may be that one can then reproduce
the exact electron density along the wires (bonds) of the Kirchhoff network model,
by use of the so-called Pauli potential introduced to allow a Schrödinger equation to
be written for the bond density amplitude. Finally, for a disordered QN, the study of
Ringwood [21] using random walk theory, which we have used numerically in Sect. 4
above, may point the way to a richer account of the effect of disorder on the nature of
the electron states in a QN model.
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